
UNCLASSIFIED

AD NUMBER

ADBl00944

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies only; Test and Evaluation; JAN
1986. Other requests shall be referred to
US Air Force Wright Aeronautical
Laboratory, Attn: POTX, Wright-Patterson
AFB, OH 45433.

AUTHORITY

AFWAL ltr 13 Jul 1987

THIS PAGE IS UNCLASSIFIED



AUTROItiTY.

RhW 7k/3J48

,• / I

" •-. v . ... °: •. -"*t.'•!• •" "•.: ..'*•'•,t•,.•: •'::''-,• ,: ...

• " s~ ... • •" -•.,..-..,•..:iti• • :.: ',:• •..°" " '."i:• • " . .::;,.".I"
• . . . . . •-



AFWAL-TR-85-2 103
Volume I

LABYRINTH SEAL ANALYSIS

Volume I -Development of a Navier-Stokes
Analysis for Labyrinth Seals

January 1986
Final Report for June 1980 - March 1985

R. C. Buggeln
H. McDonald
Scientific Research Associates, Inc.

S P.O. Box 498
Glastonbury, CT 06033

o D•stribtition limited to U.S. government agetlcigs oily,,aai& ...... p'
MoLy 1985. Other requests for th1is tocument must he refetred to

_ AFWAL/POTX, Wright-Patterson Air Force Base, Ohio ý5433

WARNING -This doctument conteins technical
data whose export is restricted by the Arms

Export Control Act (Title 22, U. S. C,.
Sec 2751 et seq.) or Executive Order 12470.

Violation of these export laws is subjectD T IC
to severe criminal penalties. ECSELECTEI

APR 1 6 tg80

DESTRUCTION NOTICE - Destroy by any
method that will prevent disclosure o'
contents or reconstruction of 14'
document.

ARRO PROPIII.STON IAWORAToRY
AIR FORC' WRICGHT AFRONALTICA, I.,1\ORATORIES
AIR F'ORCt (.YS'rKMs COKMAND

WRiCHIT PA'I'TRSoN AIR F1ORCE tHAN, Oil !&i43-"



NOTICE

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely related Government procure-
ment operation, the United States Government thereby incurs no responsibility
nor any obligation whatsoever; and the fact that the government may have formu-
lated, furnished, or in any way supplied the said drawings, specifications, or
other data, is not to be regarded by implication or otherwise as in any manner
licensing the holder or any other person or corporation, or conveying any
rights or permission to manufacture, use, or sell any patented invention that
may in any way be related thereto.

GARY F/OWILLMES, 2 Lt, USAF WALKER H. MITCHELL
Compressor Research Group Chief, Technology Branch

FOR THE COMMANDER

H. I. BUSH
Director
Turbine Engine Divisiun

If your address hes changed, if you wish to be removed from our mailing
list, or If the addressee is no longer employed by your organizatio' please
notivy AFWAL/POTX, Wright-Pattcrson AFB OH 45433- 6563 to holp maintain a
current mailing list.

Copies of this report should not be retuened unless return Is required by
security consdierations, contractual obligations, or notice en a specific
document.



* IT15l1ASCTFIRT
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified N/A
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

Distribution limited to U.S•..o ernment agena
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE only . ,6,hn 1985 Other reauedts for ih-s aocumen- must' be referre to

N/A AFWAL/POTX, Wright-Patterson AFB, OH 45433
4.. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

310001F AFWAL-TR-85-2103, Vol I

6a NAME OF PERFORMING ORGANIZATION 6Gb. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Scientific Research Associates, Ilnc('f applicable) Aero Propulsion Laboratory (AFWAL/POTX)
I Air Force Wright Aeronautical Laboratories

6. ADDRESS (Ci. State. and ZIPCo•e- 7b. ADDRESS (Oty. State. and ZIP Code)

P.O. Box 498
*Glastonbury, CT 06033 Wright Patterson AFB, OH 45433

Sa. NAME OF FUNDING/ SPONSORING T8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION IOf aplicable)

Aero fropuision Laboratory
Air Fnrm Wright Aeronautical I AFWAL/POTX F33615-80-C-2014
8C. ADDRESS (City. State., nd ZIPCode) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK IWORK UNIT

Wright Patterson Air Force Base, OH 45433 ELEMENT NO NO NO ACCESSION NO.

_I 62203F 3066 10 I 18
Ii TITLE (Include $ecurty Classific•tion)

Labyrinth Seal Analysis Volume I - Development of a Navier-Stokes Analysis for Labyrinth
Seals (Unclassified)

12 PERSONAL AUTHOR(S)

R.C. Buipeln and H. McDonald
134 TypC OF REPORT 11b TIME COVERED 114 DATE OF REPORT (YurMonth Day) 15 PAGE COUNT

4 Final fa $ROMO 1_. TO_. January 1986 97
16 SUPPLE MNTARY jIO1ATION Vol IV

Volume IIfcontain computer software; therefore distribution is limited in accordance
with AFR 300-6. Non-DOD requests must include the statement of terms and Conditions

I? (OSAr, coots '6 SUBJECT TERMS (Cont,,u. On ,eevots t nectnaey -and tdent•. by block numb.t)
FIELD 1ROUP WOu1 Labyrinth Seals, Navier-Stokes Equations; Computational

21 A-_ .. Fluid Mechanics; Alternating Direction Implicit

19 ABSTRACT (Convinuo on ,eweets# it n*ces-ry and identity by block number)
"A technique has been developed to solve the Navier-Stokes equaLions for the flow in
labyrinth seals. The technique utilizes a linearized block implicit-alternating direction
implicit procedure to efficiently solve tie unsteady governing equations to a steady state
wich appropriate boundary conditions and initial conditions. The resulting code was used
to r,.culate the flow in a wide variety of labyrinth seal geometries under various flow
conditions. Comparison with available experimental data indicates that the code will be a
valuable tool in analytically evaluating thle performance of existing and future labyrinthseals. '?r '/ '" •

S- "

:0 Ol$TglIUtlONfAVAQAfiLITV O0 A9%tRA.%C 21 ABST4AC! SE(tuRTY (tA%5afl(,AtON

SA.%C.DTE .sRT L tcUSERS ln c la ssif ied
12a NAME 0$ RESPONSIBIE INDIVIDUAL 21b ftEIP1HOM Otuludo Atet (7,4' 0 I T:(. [C 5

Tophatu. Keith C., ILT, USAF (513) 255-6720 AF, 4AL/POTX
00 FORM 1473. 84 mAa 41 APR •.,uon MAy be uerd u~tI Cthlutod eL a(keVT

All Ot'irt edibont At# ObtOlpt@



FOREWORD

This final report describes technical work accomplished during the

Labyrinth Seal Analysis program conducted under Contract F33615-80-C-2014.

The work described was performed during the period 4+" June 1980 to -3"0

d•f 1985. This contract with Allison Gas Turbine Division of General

Motors Corporation was sponsored by the Air Force Wright Aeronautical

Laboratories Aeropropulsion Laboratory, United States Air Force,

Wright Patterson AFB, Ohio, with Mr. Charles W. Elrod (AWAFL/POTX)

as Project Engineer. Technical coordination was provided by

Ist Lt. Keith C. Topham.

The technical effort reported in this volume was performed by

personnel of Scientific Research Associates, Inc., Glastonbury,

Connecticut. The empirical data used to evaluate the results of the

Analysis Model development were provided by Allison Gas Turbine Division.

This report was submitted in four volumes in May 1985. Volume I

summarizes the development of the labyrinth seal Analysis Model. Volume II

presents the user's manual for the Analysis Model computer code.

Volume III contains the experimental results and summarizes the Design

Model based on these empirical data. Volume IV presents the user's manual

for the Design Model computer code.

Publication of this report does not constitute Air Force approval of

the findings or conclusions presented. It is published only for the

exchange and stimulation of ideas.
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1.0 INTRODUCTION

The present trend of aircraft gas turbine design has been

characterized by significant increases in cycle pressure ratio and turbine

inlet temperatures required to provide higher thermal and propulsive

efficiencies. Also, increased interest in engine performance and fuel

economy has created additional emphasis for improving the efficiency of gas

turbine engines. These trends accentuate the need for improvements in

sealing technology and the development of advanced design and analysis

capabilities to reduce gas path seal leakage, maintain costly vent leakage

to a minimum, provide better control over sophisticated cooling circuits,

and prevent high levels of seal leakage into critical aerodynamic locations

in the turbine gas path which can result in considerable penalty from

thermal and momentum losses.

Current and advanced gas turbine engine requirements that impact

labyrinth seal design and performance include a broad engine power

operating range which usually results in a wide range of seal eleatzcs.

Normally, sea!.s are designed to run as tight a clearance as possible at the

maximum mission time condition. In setting the design clearance,

consideration is given to transient differential growth, maneuver

deflections, mechanical and thermal growths, eccentricity, and

manufacturing tolerances. However. with variable geometry engines and

multiple role applications the engine seals will not always operate at the

design clearance nor provide minimum leakage across the operating

spectrum. Improved seal design and analysis capabilities must be developed

to address this problem.

Gas turbines require a variety of labyrinth seal designs. The seal

configuration selected for a given application is based on the purpose of

the teal and satisfying design criteria that includes the folloving

considerations: axial envelope available, Axtil travel, clearance range,

potential wear, system sensitivity to seal clearances, cooling flow

requirements, sensitivity to damage in handling. assembly requirements, and

pressure ratio.



Labyrinth seals are used throughout a gas turbine engine, including:

compressor and turbine airfoil end seals, bearing compartment seals, and

flow system seals to minimize or control flow. The purposes of these seals

are not always the same. Labyrinth seals used in the flow path are

intended to minimize end leakage. Bearing compartment seals are intended

to keep the oil in the bearing compartment and to minimize the amount of

air leakage and heat addition to the oil. Thrust balance labyrinth seals

are located radially to provide a desired off-setting axial toad component

to reduce bearing loads to the design level. Other flow system network

seals have several functions including: controlling leakage flows either

to a minimum or to a level to satisfy disc pumping and thus prevent hot gas

recirculation in a cavity, controlling cavity pressures to reduce axial

bearing loads, or preventing excessive leakage,

The variety of locations, functions, and operating conditions imposed

on labyrinth seals in a gas turbine engine rtqutres a design and analysis

capability that takes advantage of the numerous seal geometries available

and accurately predicts the seal performance. Labyrinth seal geometries

include straight-through seals, step seals, and a variety of advanced

complex geometry designs. The seal knives may be vertical or slanted, the

knives may be placed on a rotating or stationary surface. Seal lands say

be smooth and solid, honeycomb, roughened surface solid, striated, .

abradable (porous or non-porous). Other seal geometry variables include

knife edge thickness and sharpness, clearance, knife pitch, cavity depth

and shape, namber of knives, step height, knife location on the step, and

knife angle. Aerodynatic parameters that must be coptidered in seal design

include rotational speed, pressure ratio, temperature, and Reynolds number.

It a labyrinth seal design is to be suceessful for the application

intended, an accurate seal design and analysis model is necessary. The

design .And analysis capabilities available today re-y heavily on empirical

relationships 4.hteh severely limit the application range. Available

analytical formulations were originated many years ago and do not take

advantage of modern flow field calcuation techniques such as the advances

offered by solutioat algorithms for the Navier-Stokes equations. Available

seal design and analysis models are severely restricted relative to

4nalyzing new nod *dvarocod seal defigns. Also, many of the geometric and

aerodynamic parameters in a lab %eal have interfacing effects which make it



difficult to accurately assess individual parameter effects from test

data. Therefore, to examine the numerous individual and combinations of

seal geometric and aerodynamic parameters experimentally would be time

consuming and very expensive. In addition, empirically derived models do

not provide the capability to assess new configurations nor do they provide

the design engineer with guidance on how to improve the efficiency of the

seal beyond what information has been determined experimentally.

Therefore, a critical need exists for labyrinth seal design and

analysis calculation models that provide the seal design specialist with

the analytical tools to calculate, study, understand and evaluate the

details of the labyrinth seal internal flow field and to assess subtle

geometric changes relative to improving the seal efficiency. Final tuning

and verification of the resulting configuration would still be accomplished

on a seal test rig.

Originally, the design of a conventional straight-through labyrinth

seal was usually a compromise between the number of seal knives and a knife

pitch that wau large enough to reduce the kinetic energy carryover to a

minimum. Hloever, numerous investigators have identified a significant

ntmber of additional performance influence parameters. Today, the

qualified seal designer recognizes there are a lorge number of geometric

and aerodynamic parameters that influence the performance level of a

labyrinth seal. Thes parameters, for a conventional straight-through

itO.al include..

o Clearance o Pressure ratio

o Pitch o Knife angle

o Number of knives o Land sturface (smooth, honeycomb,

o Knife tip thickno-.s striated, ezr.)

o Rotational speed o Knife thight

o Cavity volume o Reynolds number

o Knitf sharpness o Eccentricity

To the above list reveral adeit.ional parameters can be added when a

ntep sea| it considered. Th~ee addttional parameterg include:

"o Step height o Oistance from sal knife to n.sep faý-e

"o Step cnnftiguration a Flow dtre'.ton

I



It should be noted that the seal performance influence parameters

listed above do not operate independently. The inherent design of a

labyrinth seal causes the individual geometric and aerodyamic influence

parameters to have overlapping or interfacing effects. For example, the

effect of seal clearance on leakage is significantly different depending on

the knife pitch and number of knives. Therefore, a very large matrix of

-:identified parameter combinations exists which determine labyrinth seal

performance.

There are numerous types and applications of labyrinth seals in a gas

turbine. The labyrinth seal may be a straight-through, slanted straight, a

back-to-back or fir tree arrangement, stepped, or slanted stepped. Flow

may be "up" or "down" the step. The seal lands may be solid-smooth,

roughened, abradable (porous or non-porous), or honeycomb.

The flow fields in the various types of labyrinth seals used in a gas

turbine have similar complexities but differ significantly between a

conventional straight-through and stepped seal (see Fig. 1). The stepped

seal has a mechanism, the vertical step face, to spoil the through flow.

The straight seal has a core of through-flow (referred to as kinetic energy

"carry-over) that results in higher seal leakage rates compared to a stepped

seal. Therefore, the step seal provides additional parameters for the

design engineer to consider.

The number of tests and amount of hardware, time, and cost to develop

- all labyrinth seal performance empirically are prohibitive. In addition,

any new labyrinth seal design concepts would have to be tested to determine

their performance. If one additional geometric or aerodynamic variable

that had not been experimentally evaluated before is introduced or varied,

then not only must this new parameter be evaluated, but each geometric and

aerodynamic parameter interface miat also be evaluated to determine

- combination effects. Therefore, iU is desirable to supplement the

" mpitical approach and consider analytical techniques to assist in the

Sdesigr and analysis of labyrinth seals. However, the labyrinth seal flow

*field must be classified as one of the most conplex and challenging for a
thsdretical analysis. The flow field is turbulent, separated,

:compressible, viscous, has one wall rotating, and experiences streamwiue

vorticity. If unsteadiness is present, then any ant&lytLical analysis that

is not time-dependent may havw difficulty attaining agreement with test

results.

4



There are several classical analytical methods available in the

literature for estimating labyrinth seal leakage. However, erch of these

methods is based on certain simplifying assumptions which limit the areas

"of applicability. Several of the more recent theoretical merhods will

yield reasonable estimates of leakage, but the area of applicability of

each method is restricted to a narrow ra-age of geometries and overall

pressure. None of the available methods account for more than four or five

variables. No general solution is available for calculating labyrinth seal

leakage flows, nor has an analytical method been developed that examines

the seal interior flow field to provide aerodynamic details and guidance to

improve the efficiency of the labyrinth seal.

SThe origin of the labyrinth seal can be traced to C.A. Parsons

(Ref. 1) who apparently intcoduced the concept of a steam turbine and

reported the event in 1892 (Ref. 2). The design concept was to provide a

tortuous path between high and low pressure regions by using a series of

non-contacting restrictions and chambers. The characteristic functions of

the restrictions were to convert the pressure head into kinetic energy

which would then be dissipated as completely as possible in the intervening

chambers. The effectiý -n4-s of this concept is shown by its continued use

in the current most moueta gas turbine designs.

Although the labyrinth seal is relatively simple in design, the

numerous geometric and aerodynamic parameters associated with determining

the overall performance are numerous and complex as noted earlier.

However, theoretical formulations to describe the flow field through the

labyrinth seal have been attempted apparently starting with E. Becker in

1907 (Ref. 3). Closely following Becker was a paper by N.M. Martin

(kef. 4). It is interesting to note that these two papers establish the

classical labyrinth seal theories which can bw organized into two families:

(1) Treat the seal knives as a series of individual throttles

(Martin approach, Ref. 4).

* (2) Treat the seal as a friction device (Becker approach. Ref. 3).



Generally speaking, existing labyrinth seal flow calculation theories

make assumptions that place the theories in one of two classifications

(1) Small AP is assumed across each restriction.

(2) Last restriction choked.

Stodola's (Ref. 5) and Martin's (Ref. 4) formulas assume small AP across

each restriction, i.e., all kinetic energy is recovered as internal heat in

the seal cavities. These formulas also assume the discharge coefficient is

1.0 for each restriction. These two often-quoted formulas, as well as

others that are similar, assume that the gas experiences an ideal

isothermal expansion across each seal knife followed by dispersion of the

kinetic energy and reheating before entering the next seal knife. The many

theoretical studies in this classification which have appeared in the

literature are of little value in the prediction of leakage rates through

the commonly used straight labyrinth seal because the assumptions on which

they are based approach the conditions which are approximated only in step

seals. The authors of these theoretical studies seek to modify the theory
with empirical correction factors to make the calculation fit test data.

Theoretical analyses to date have neglected or approximated the

carryover (sometimes referred to as velocity of approach) of kinetic energy

from knife to knife. This carryover factor varies substantially with

geometry and pressure ratio. Also, the discharge coefficient must be

evaluated for each particular knife (or stage) geometry and will vary

depe.nding on several factors including:

o Knife rip thickness o Reynolds number

4 Clearance o Number of Knivoq

In addition to the foregoing parameters, the carryover factor and

discharge coefficient may be effected by surface roughness, land porosity,

honeycomb and striatod lands, and knife rotation.

016



Trutnovsky (Ref. 6), like Becker (Ref. 3), treated the seal leakage

as flow in a rough pipe. However, his solution of the basic equations

describing the flow is complicated and in general difficult to use.

Zabriskie and Sternlicht (Ref. 7), offer an approach that is an extension

and simplification of the method used by Trutncvsky. However, numerous

investigators have challenged this general approach as not being correct

relative to the physical considerations of the problem.

Must theoretical approaches make a simplifying assumption regarding

th• Inteccavity vortex and eddies and give no help on how to improve these

cavitien to reduce leakage. It is known that the shape and size of the

cavity between seal knives affects the strength of the vortex and eddies

which convert the kinetic energy issuing from each knife into internal

ertergy.

It ts appAren. from the foregoing discussion that existing

theoretical methods, which necessarily employ empirically derived modifiers

for calculating labyrinth seal flows, have significant shortcomings. A

generalized theoretical approach with proven accuracy and reliability is

not available.

This situacion leaves the design engineer with the dubious task of

selecting a method for hie needs from numerous methods with varying degrees

of accuracy and range of application. Furthermtre, the seal design

specialist does not have the analytical tools to examine the details of the

labyrinth seal interior flow field anti dete-mine geometry changes that

would increase sea) cavity turbulence resulting in improved sealing

efficiency.

The analysis tools requirei by the mechanical design engineer and the

seal research specialist are distinctly different. The design engineer

requires a simplified "design" calculttion model thet will determine the

overall performance of a Aabyrinth seal when selected geometry ij

specified. The design engineer also has a need for a calculation audel

that will provide dimensional criteria for an optimum sea! configuration

for a given application when an absolute mirtimu.. of information is

supplied, i.e., clearance, axial envelope, ittational speed, and pressure

ratio. The design model input format should be simple and the computer run

time should be minimum for the model to be practical as a production

program. Incorporating available test dato and generating seal nariormance

7



data not currently available to update and expand existing t'eoretical

models that rely heavily on empirical correlations offers the most

effective approach for the development of an advanced "design" model.

The seal research specialist requires an "analysis" calculation model

that provides the aerodynamic details of the seal interior flow field in

order to determine and evaluate the effects of the numerous geometric and

aerodynamic parameters incorporated in the design of conventional

straight-through and stepped seals. This capability will enable the seal

specialist to identify and analytically evaluate design improvements to

obtain higher efficiency labyrinth seals as well as to improve the accuracy

of conventional seal design leakage calculations.

Recent developments in the phenomenological models of internal

turbulent flows shows that the methodology has progressed to the point that

the complex turbulent flow field within the labyrinth seal interior may be

calculated via direct analysis using Navier-Stokes computer codes presently

available, modified for the geometry of a labyrinth seal. The successful

application of a compressible time dependent Navier-Stokes solution would

provide a major breakthrough in seal analysis technology.

The value of a Navier-Stokes solution method for the labyrinth seal

leakage calculation is that it can potentially analyze most of the

geometric and aerodynamic effects individually and in matrix combinations.

There may be some effects that cannot be completely modeled. In these

cases, test data may be used to support and expand the Navier-Stokes

solution method.

Labyrinth seal design improvements have been limited because the

tools to analyze the effects of geometric changes or uniqtta configurations

do not exist except in a very fundamental or simplified analysis form. The

availability of a Navier-Stokes solution would provide a capability to

study and analyze many complex geometric shapes and configurations that can

only be evaluated presently through expensive and time consuming tests.

Although the Navier-Stokes solution may be limited in calculating the exact

level of performance for exotic seal configurations, it will guide the

engineer, through performance trends, to a more efficient design. The

final design should be tested to verify performance characteristics of the

seal.

8



In regard to Navier-Stokes solutions, several items need to be

considered. It is clear that a viable analysis which simulates the seal

flow field must allow for flow ranging from the low subsonic regime to the

transonic regime, must include possible shock waves, must allow for

dominating viscous effects and must allow for very large regions of

recirculation. These considerations clearly dictate a Navier-Stokes

approach to the problem.

In most instances the Navier-Stokes equations are so intractable that

only numerical solutions can be obtained. Numerical techniques for solving

the Navier-Stokes equations are discussed by Roache (Ref. 8) and more

particularly for the compressible Navier-Stokes equations by Peyret and

Viviand (Ref. 9). Peyret and Viviand singled out three techniques, the

explicit scheme of MacCormack (Ref. 10), the scheme due to Widhoff and

Victoria, (Ref. 11) also explicit, and the implicit scheme of Briley and

McDonald (Ref. 12). The technique of MacCormack (Ref. 10) has been very

effectively applied for instance by Shang, Hankey and Law (Ref. 13) in a

shock wave-boundary layer interaction problem. However, the need to

compute large regions of relatively low speed recirculating fluid

interspersed with local high speed throats in the labyrinth seal problem

could make the stability bounds of the MacCormack scheme very restrictive.

As a result in the labyrinth seal problem, unacceptably long computer

run times could result from the required locally refined spatial meshes

with the stability restricted scheme. The technique of Briley and

McDonald (Ref. 12) on the other hand, is not restricted by the stability

bounds of the HacCormack scheme and the Widhoff and Victoria scheme and,

thus, is better suited for the labyrinth seal problem than either of the

other two candidate algorithms. For these reasons the Briley-McDonald

(Ref. 12) technique was used in the present effort to predict the detailed

flow field in the labyrinth seal investigation.

9



2.0 ANALYSIS

2.1 Governing Equations

The governing equations utilized in this study are the ensemble

averaged time dependent Navier-Stokes equations. These equations are the

mathematical statement of the physical conservation laws of mass, momentum

and energy for one phase fluid dynamic systems. Using vector notation,

these transport equations can be respectively written as

a = V.(pV)()a t

((f V -V 'VPVV)+V r -VP (2)
at

and

P(+ v vy + VV(VVV-Vq + v -V(PV)

(3)

where p Is the fluid density, V is the Eulerian velocity vector and U is

the specific internal energy. The thermodynamic pressure, P, is related to

the temperature, T, and density, O, by the perfect gas equation of state

P p RT (4)

where R ts the universal gas constant and H is the mixture molecular

weight. The stress tensor, T, is related to the velocity vector, Q, by the

relationship

-. 2r AC(VV+ VV - /3V(5)

4

4
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where P is the viscosity while the heat transfer, q, is related to the

temperature, T, by the Fourier relationship

q = -KVT (6)

where K is the thermal conductivity. Eq. (3), the energy equation,

represents the balance between the time rate of charge of the internal plus

kinetic energy (U+1/2VoV), the convection of that energy, the heat transfer

and the stress and pressure work. Defining the static enthalpy by

A p
h SU+ (7)

P

the energy equation can be rewritten as

a Lp(h+1 V-V)J 'Pj - -V [ p(h +-V. V)]- V + V-r (8)

Using the stagnation enthalpy defined by the relationship

1 -. 0 -,

ho U h +iV.V (9)

yields the more compact form, viz.,

(, ph) - t 9 -V-(ph 0 V) -V-q + 'V'(rV) (10)

By dotting the velocity vector, w, vitb the momentum equation, Eq. (2) and

using the vector identities

-d a .- V - Vp-V aP
V -i- (PV) it -(P + -. (1di 2 2 at (i

and

VV1 V-V
V9'(pVV) '( )V' +- V -12

: L 2 J 2 Vp )(2



and applying the continuity equation, Eq. (1), one can obtain the so-called

mechanical energy equation

--- )v .P( VP .7ý(V'T (13)

Subtracting the mechanical energy equation, Eq. (13), from the energy

equation, Eq. (8), and applying the vector identity

V.('v- v .(V. T)+ T : Vv (14)

and using the definition of energy dissipation, 4, as

4 V r.Vv (15)

one obtains an alternate form of the energy equation expressed in terms of

the time rate of charge of the static enthalpy

d aP _ _0 (16)
t" ph)- •t=-V"(phV)- V-q + -VP + 4)

The static enthalpy, h, can be related to the temperature, T, by the

frelationship

T

h f Cp(T) dT

Tr (17)

where Cp is the specific heat at constant pressure. If a calorically

ideal gas is assumed, (Cp is a constant).

h T (18)

Eq. (16) can be further simplified and uritten in terms of temperature.

V
12
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The system of coupled nonlinear partial differential equations

represented by Eq. (1), (2), and (16) are the basis of the governing

equations used in this study. The equations are valid for both laminar and

turbulent flow. However, for turbulent flow, all variables are ensemble

averaged (Ref, 14) and the viscosity and thermal conductivity, k, must be

considered as effective values. Thus, the viscosity must be considered as

the sum of the laminar and turbulent viscosities (the turbulent viscosity

comes from the Boussinesq approximation to the Reynolds stress terms).

kL ýýLj iLT(19)

The viscosity is related to the thermal conductivity and the specific heat

by the concept of a Prandtl number (which is presumed to be known)

k - /4(20)
PrI

kr x (21)
Pr,

and

k 2 k- + kT (22)

In this study, two methods were used to represent the turbulent viscosity.

Ut. The first uses the algebraic mixing length of Prandtl where

2
Iir -5-C) (23)

where D:D it the second variant of the mean fluw rate of deformation

tensor, i.e.,

.+ "v ) (24 )

and tm is the mixing length which will be discussed at a later time.

13



The second method utilized in this study is to assume the

Prandtl-Kolmogorov relationship (Ref. 15) for turbulent viscosity, the

so-called k-c model

pK2

LT z C. -P(25)

where cU is a 'constant' (to be discussed at a later time) k is the

turbulence kinetic energy defined by

'2 7

2 (26)

and c is the dissipation of turbulence kinetic energy. Partial

differential equations govern the distribution of k and c in the flow. For

a discussion of these equations, the reader is referred to Refs. 16

and 17. The resultant equations are

apK js. 
IF-(pV)+V'( VK)+ (1 sr 0:0 -pC) (27)

and

aeIL.. 6
"" -V-(pEK)+ V- V) + -- (C, TO:u - Cepe) (28)
I. 4K

Thus, Oten a k-c turbulence model is used, two additional coupled nonlinear

partial differential equations are added to the original governing partial

differential equations.

In #summary, the governing system of equations used in this study

include the partial differential equations. Eqs. (1), (2). and (16) plus

(27) and (28) if a k-c turbulence model is used. The constitutive

relationships are represented by Eqs. (4)-(7). (15). (17) or Eqs.(18).

(19)-(22), and (23) if a mixing length model is used. or Eq. (25) if a k-c

turbulence model is used.

14



2.2 Coordinate Systems

Application of the governing system of partial differential equations

to a given problem is not in general straight forward and several decisions

must be made before these equations can be put in a form suitable for

solution by numerical techniques. First, a coordinate system must be

chosen. For the cases of interest in this study, a body or boundary

conforming coordinate system is normally used. Except for the simplest

cases, a noncartesian coordinate system must be employed. In many cases a

nonorthogonal coordinate system must be used, e.g., the case of a seal with

a tapered knife blade. Use of a noncartestan coordinate system requires
4

the choice of both the components of velocity vector, V, and the choice of

the directions in which the vector momentum equation is to be expressed.

For instance, the velocity components and the directions in which the

momentum equations are written can be aligned with the coordinate

directions (Ref. 18), or if one desires, the velocity components and

momentum equation directions could be aligned with the cartesian or

cylindrical polar coordinate directions (Refs. 19-21). Combinations of the

above are also possible, although to the author's knowledge, have not been

used to date.

In this study two basic types of geometric configurations are

considered: (1) planar configurations and (2) axisymmetric

configurations. The planar configurations are utilized primarily to

aimolate experimental setups where the data ts taken in a two-dimensional

planar environment. The axisymmetric configurations are used primarily to

simulate engine component performance in a rotating or nonrotating (but

still axisymmetric) environment, When a rotating system is analyzed, the

flow Is three-dimensional, however, there is sympetry with respect to the

rotating direction, i.e., 3/30-0. Thus the governing partial differential

equations can We expressed in terms of two coordinate directions, but three

velocity components are required to define the velocity vector and three

momenta equations must be solved.

Tie remainder of this section will describe the derivation of the

governing system of partial difforential equations to be used for planar

nonorthogonal configurations. The derivation for axisymmetric

configurations is similar and the details are discussed in Ref. 19.



Although in this study the governing equations were only solved in two

dimensions and axisymmetric flow, the technique is applicable to two and

three space dimensions. For generality here the three-dimensional

derivation is presented.

The technique utilized in this study is similar to that reported in

Refs. 19-21. The dependent variables are chosen as the three cartesian

velocity components, ul, u2 and u3, the density, p, and the static

enthalpy, h,. The momentum equation is also expressed in terms of the

three cartesian directions xl, x 2 and i3. These governing partial

differential equations in cartesian coodinates can be expressed in the form

W + S (29)

where
Put

put
W =pu3

P
ph 

(30)

and pu2 + P +

puua + r, •

%F1 put u3 + I" '3, (31)

I. 
(32)put

push + P + (32)

%16 2

PU h +

16



Pu3uI + 1" 1 3

PUPu + TY3

F3 a Pu 3 +P+r 33 (33)

Pu3

pu 3 h + q3

and

0
0

Sw 0 (34)
0

,L(D.-D + 3v.
+ V.VP)

wahere in tensor notation, the normal and shear stress components and the

heat transfer are respectively

Oul 2

iu oi.

KIT + (36)

S -' - " -•( 3 7 )

da , (38)
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_•,and aT
and= - .:L (39)

•j
Transforming Eq. (30) to s -; neral coordinate system in which the

general coordinates, yJ, are related to the carteslan coordinates

xl, x2 and x3 by the relationship

Y = ( xx 2 x 3 ) (40)

and use of the chain rule yields

---. •OW OF1  Oyj

- - S (41)
_•,• t Oy OXj

Defining the Jacobian determinant of the inverse transformation, J, by

ay a2 ay3

a, OFgx ,l 3) a72e a2 U2 (42)
4 J =-i- -

a(y', y, y2 0yl ay 2  ay 3

.a7 O R3 Oy a il
ay t Y2  dy 3

and multiplying Eq. \41) by the Jacobian yields

aw ayW OF1
. (43)

-. it i Jy

This form is sometimes referred to as the weak conservative form. By

-. assuming that the Jacobian is not a fu," tion of Lime, t, one can rearrange

Eq. (44) in the form

-X' Ot (dW) = -F) t (d h ) (44)at0 0y 1 3 yiy



However, it can be shown that (Appendix A)

SW aY =0 (45)

The derivation of Eq. (44) in fact is general in that if the

transformat•,in of Eq. (43) had a moviag coordinate system, the Jacobian

could be taken inside the time derivative, and thus the transformed

equation .can be written in the form

TWW(J-F 1 ) (46)

This form of the transformed governing partial differential equations is

sometimes referred to as the strong conservative form, and this is the form

of the governing equations solved in this study. The primary advantage of

using the cartesian velocity components and solving the scalar mome!,'a

equitions associated with the cartesian directions is that the number of

terms of the governing differential equations is kept to a minimutt. for

nonorthogonal systems. If there is no specific reason why the cartetan

velocity components and directions for the moment* equations are unsuitable

f or a given application,, this is the most efficient means of solving the

governing equations. For this study and many oater applications this

technique does not appeer to have any disadvantages vis a via other

methods. and hence that procedure was chosen here.

In three dimensions each convective and pressure term from the

cartesian equations in general becomes three terms in the transformed

system. Each stress and heat transfer term becomes nine terms in the

transformed system. For two-dimensional flow, the corresponding numbers

are, two and four. To defiae the stress and heat transfer terms in the

transformed coordinate system requires applying the transformation to

Eqs. (35-39). This yields in tensor notation,

'a. I dul 2
p(2 j - jVV) (7

19

- .. . .. . . .. .. ._ h * ~



yk dul k

- ~ a d y au1  48

* and

__j aO
VV all ayj (49)

and

dyj 6T
- K----- (50)

2.3 Initial and Boundary Conditions

Steady solution of the system of governing partial differential

equations represented by Eq. (46) is obtained by time marching this system

of equations until the steady state is reached. Before the solution

procedure is described two important aspects must be discussed: (1) the

initial conditions and (2) the boundary conditions. Any procedure which

utilizes either a time marching method to obtain a steady state (or

transient) solution or a Newton-Raphson iteration procedure requires some

initial guess of the flow variables (in this case all the dependent

variables and other necessary variables such as pressure, temperature,

viscosity, etc.). In some of the simpler cases, a reasonable approximation

to a converged solution can either be guessed or obtained through plysical

reasoning, However, since the range of geometries considered under this

effort were so diverse, it was felt that no reasonable general initial

guess procedure could be. developed. The approach taken here was to assure

that the flow was Initially stagnant (all velocity components were zero)

by assuming that the pressure and temperature were a constant and set equal

to the stagnation conditions of the source flow. The downstream or back

pressure is then lowered to some desired level over a period of time, and

the flow is dra-i4 through the seal until a steady state is achieved.
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This technique has the advantage of being easy to implement in any

geometric configuration. In addition, the lowering of the back pressure

can be considered to be similar to an experimental apparatus where the

source tank is pumped up and the back pressure gradually lowered by opening

a downstream valve.

To obtain a solution of the governing system of partial differential

equations represented by Eq. (46), it is necessary to define boundary

conditions on each bounding surface of the computational domain. For the

purposes of this investigation boundary conditions can be classified as

occurring on three different types of bounding surfaces: (1) walls or

solid surfaces, (2) inlets and (3) exits. The boundary conditions utilized

on each different type of surface will now be discussed in turn. Analysis

of the characteristics of the boundary layer equations shows that (in three

dimensions) four conditions must be specified on walls. For this study,

the no-slip conditions are used for the tangential (to the wall) velocity

components, i.e.,

UT T O (51)

and

UT. Ta 0 (52)

where the subscripts T! and T2 refer to the two tangential velocity

components. (For two-dimensLonal flow only one tangential velocity

component is used). For the normal velocity component either the normal

velocity component or the normal mass flux is specified, i.e.,

uN r U w (53)

or

PUN , MW (54)

21



where the subscript w refers to the specified wall value. The fourth

condition used, the thermal condition, either specifies the wall as being

adiabatic or specifies the wall temperature. These conditions can be

written respectively as

i; -VT =O (55)

or

T = Tw (56)

where in this case nw represents the unit vector normal to the wall. In

addition, a fifth condition (in two-dimensions a fourth) not required by

the characteristic analysis, is used for convenience to close the set of

equations. The need for this fifth condition could be removed by the use

S.of one-sided difference approximations or by applying one of the governing

equations at the wall. In this study, the second method was used and the

boundary layer apprdximation to the normal momentum equation was applied at

the wall. This can be expressed as

""nw. VPsO (57)

Studies have indicated that there is little difference between using this

r* equation or using the full normal momentum equation. The condition of

Eq.(57) approximates the normal momentum equation to order Re-I for

viscous flow at a no-slip surface. The symmetry equations are meant to be

applied on a plane or axis of symmetry. The normal component of velocity

is set equal to zero on the axis of symmetry, i.e.,

f V ** 0 (58),* -
where ns is the unit vector normal to the axis or plane of symmetry. In
addition the normal derivatives of the remaining two tangential components

of velocity are set to zero. Two other conditions must be set on the axis
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or plane of symmetry. Usually the symmetry conditions on pressure and

temperature are used, viz.,

n VPO (59)

and

n. • VT.* O (60)

On inlets the characteristic analysis shows that four conditions must

be set (for three-dimensional flow). The procedure used in this study is

to divide the flow on the inlet into two regions: (1) a central core where

the flow is essentially inviscid and (2) the attached boundary layers where

the normal pressure gradient is zero. This technique, which can be called

the 'two-layer model', sets a constant stagnation pressure in the central

core region of the inlet boundary. In the attached boundary layer(s), the

static pressure is set at the central core edge value, and the form of the

streamwise velocity profile is set. It is to be emphasized that the

magnitude of the streamwise velocity is not specifically set. Rather

interaction of the core flow and the rest of the flow with the inlet

boundary layers sets the magnitude of the boundary layer inlet streamwise

velocity profile. In this study two forms of boundary layer profiles were

used: (1) for laminar flow the von-Karman-Polhausen (Ref. 22) profile was

used. and (2) for turbulent flow the Maise-Mcfonald (Ref. 23) profile was

used, In addition to the 'two layer model' boundary condition, two

additional velocity conditions must be specified. In this study the flow

angle between the streamvise velocity component and the transverse

component was specified (usually as zero) and if the apparatus was rotating

a swirl velocity profile was specified. The fourth boundary condition was

the thermal condition that the stagnation enthalpy on the inlet boundary

remains constant. In addition, a fifth condition, not required by the

characteristic analysis, is used to numerically close the set of

equations. In this case the weak condition that second derivative of

pressure normal to the inlet plane equals zero was used. The advantage of

this condition is that it allows pressure waves to exit the computational

domain rather than reflect off boundaries.
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A characteristic analysis of the governing equations on an exit plane

shows that for subsonic flow only one condition must be set. In this study

the condition is met by setting the back pressure to some desired value.

Thus, since the upstream (inlet) stagnation pressure is set in the inlet

boundary core region, the mass flux is determined by these two variables

and the loss mechanism that occurs in the physical domain. As before to

numerically close the set of equations, four more exit conditions musi be

set. In this case weak conditions are set, viz., the second derivative of

the three velocity components and the temperature are set to zero, the

so-called parabolic assumptions.

If the two-equation (k-e) turbulence model is used, two additional

partial differential equations must be solved, and hence initial and

boundary conditions must be specified for these equations. The procedure

used in this study is to obtain a converged solution with a mixing length

model, then use the assumption of an 'equilibrium turbulence model' as an

initial guess for the k and c fields, and obtain a converged solution with

a k-c turbulence model. The 'equilibrium turbulence model' assumes that

the production and dissipation of turbulence kinetic energy are balanced

and that the turbulent viscosity, UT, can be calculated from the mixing

length model, i.e., Eq. (27). Thus by setting the source term of Eq. (27)

to zero and by using Eqs. (23) and (25), 'equilibrium' values of k and c

can be obtained, viz.,

2

Dm:D (61)

and

c3 1' k 3 12

/1= (62)

Im

In this study the Jones-Launder (Ref. 16) formulation for C. is used

2.5

t + 0.02 R* T (63)
cp 0.09e
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where ReT is the turbulence Reynolds number defined by

ReT -PT (64)

Therefore

2.5
- /•T(65)

1 + 0.02 I

CL = O.09e C1 2 (65

Eq. (65) ts-a transcendental equation in C. (as an initial guess pr is

calculated from the mixing length model and the laminar viscosity Ut• is

known) which is solved by a straightforward 'Newton-Raphson' iteration

technique. Once this is done the value of CP can be substituted into

Eqs. (61) and (62) and initial guesses of the k and c fields obtained.

Boundary conditions for the k and e equations are as follows: (1) on

inlets the values of k and c are frozen at their equilibrium values from

the converged mixing length solution, (2) on walls the values of k and C

are set to zero, (3) on axis or plane of symmetry the normal derivatives of

k and c are set to zero, and (4) on the exit plane the second derivatives

of k and e are set to zero.

2.4 Numerical Procedure

The numerical procedure used to solve the governing equations is a

consistently split linearized block implicit (LBI) scheme originally

developed by Briley and McDonald (Ref. 12). A conceptually similar scheme

has been developed for two-dimensional M.ID problems by Lindemuth

and Killeen (Ref. 24). More recently Beam and Warming (Ref. 25) have

derived this and other related schemes by the method of approximate

factorization. The procedure is discussed in detail in Refs. 12 and 26.

The method can be briefly outlined as follows: the governing equations are

replaced by an implicit time difference approximation. Terms involving

nonlinearities at the implicit time level are linearized by Taylor

expansion in time about the solution at the known time level, and spatial

finite difference approximationi are introduced. The result is a system

25
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of multidimensional coupled (but linear) difference equations for the

dependent variables at the unknown or implicit time level. To solve these

difference equations, the Douglas-Gunn (Ref. 27) procedure for generating

alternating-direction implicit (ADI) schemes as perturbations of

fundamental implicit difference schemes is introduced in its natural

extension to systems of partial differential equations. This technique

leads to systems of coupled linear difference equations having narrow

block-banded matrix structures which can be solved efficiently by standard

block-elimination methods.

The method centers around the use of a formal. linearization technique
adapted for-the integration of initial-value problems. The linearization
technique, which requires an implicit solution procedure, permits the

solution of coupled nonlinear equations in one space dimension (to the

requisite degree of accuracy) by a one-step noniterative scheme. Since no

iteration is required to compute the solution for a single time step, and

since only moderate effort is required for soluticn, of the implicit

difference equations, the method is computationally efficient. This

efficiency is retained for multidimensional problems by using what might be

termed block ADI techniques. The method is also economical in terms of

computer storage, in its present form requiring only two time-levels of

storage for each dependent variable. Furthermore, the block ADI technique

reduces multidimensional problems to sequences of calculations which are

one dimensional in the sense that easily-solved narrow block-banded

matrices associated with one-dimensional rows of grid points are produced.

A more detailed discussion of the solution procedure as discussed by

Briley, Buggeln and McDonald (Ref. 28) is given in the Appendix B.

2.5 Artificial Dissipation

One major problem to be overcome in calculating high Reynolds number

flows using the Navier-Stokes equations is the appearance of spatial

oscillations associated with the so-called central difference problem.

When spatial derivatives are represented by central differences, high

Reynolds number flows can exhibit a saw tooth type oscillation unless some

mechanism is added to the equations to supptess their appearance. This

dissipation mechanism can be added implicitly to the equations via the
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spatial difference molecule (e.g. one-sided differencing) or explicitly

through addition of a specific term. The present authors favor this latter

approach for two reasons. First, if a specific artificial dissipation term

is added to the equations, it is clear precisely what approximation is

being made. Secondly, if a specific term is added to suppress

oscillations, the amount of artificial dissipation added to the equations

can be easily controlled in magnitude and location so as to add the minimum

amount necessary to suppress spatial oscillations. Studies can also be

easily performed to evaluate the effect of the explicitly added dissipation

on the solution.

Various methods of adding artificial dissipation were investigated in

Ref. 12, and these were evaluated in the context of a one-dimensional model

problem. The model problem used was one-dimensional flow with heat

transfer. Flow was subsonic at the upstream boundary, accelerated via heat

sources until a Mach number of unity was reached and then accelerated to

supersonic velocity by heat sinks. The exit back pressure was raised to

cause a shock to appear in the.supersonic region. This basic

one-dimensional problem contained many relevant features including strong

accelerations and the appearance of a norma. shock wave. Therefore, it

served as a good test case for various forms of artificial dissipation

which could be used in the presence of shock waves.

The results of the Ref. 29 investigation led to the conclusion that

for the model problem a second order artificial dissipation approach was

the best of those considered. This approach adds a term of the form

Vart 324/3z2 or 3/3Z {vart 84/3Z) to each governing equation where

# O, 0u, v, w for the continuity, x-momentum, y-momentum and z-momentum

equations respectively and Vart is determined by

I UZkAZ) 1 (66)S t~z ' z

The AZ in Eq. (66) is the distance between grid points in n given

coordinate direction, UZ is the velocity in this direction, oz is the
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artificial dissipation parameter for this direction and v is the effective

kinematic viscosity. The equation determines vart with Vart taken as

the smallest non-negative value which will satisfy the expression. It

should be noted that in two space dimensions each equation contains two

artificial dissipation terms, one in each coordinate direction. For

example, the streamwise momentum equation expressed in two-dimensional

Cartesian coordinates would contain the artificial dissipation terms

62W ()2 W
-- art _aXT + ("artz 4Z 2  (67)
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3.0 RESULTS

The primary objective of the computational effort is to demonstrate

the capability of the previously described numerical technique to

accurately calculate the flow in realistically configured labyrinth seals

at typical operating conditions. It is hoped that the achievement of this

objective will provide insight into the details of the flow structure not

easily obtainable by experimental methods, and that this demonstration will

lead to the use of this analytical tool in the design of future labyrinth

seals. In order to achieve the above objective, a series of calculations

were performed. These calculations can logically be divided into four

categories: (1) calculations designed to show the ability of the numerical

procedure to accurately predict the leakage of various labyrinth seal

designs at typical operating conditions, (2) calculations to obtain a

performance curve for two seal configurations, (3) calculations of the flow

for two seal configurations which can be compared with experimental data

obtained at Allison Gas Turbine Operations (Ref. 30) for the same seal

configurations and at the same operating conditions, and (4) a

demonstration calculation of the ability of the numerical procedure to

calculate the flow in a sample configuration while the seal assembly is

rotating.

Before going into the details of the calculations, it is desirable to

define the labyrinth seal nomenclature that is appropriate to the

configurations considered in this study. The geometric capability of the

computer program developed under this study allows for the analysis of a

wide variety of both conventional straight-through and stepped seal

configurations. Nomenclature that is common to both types of seals is

shown In Fig. (2). CL is the clearance between the seal knife tip(s) and

the stator or land. Kr represents the knife blade thickness at the tip.

0B is the knife blade taper angle, and KO is the knife blade slant angle

relative to the rotor surface. li represents the knife blade height and

K0 is the distance between successive knife blades. For stepped seal

configurations DTC is used to represent the minimum horizontal

distance-to-contact between the knife blade and the stator, and SH is the

step height. In addition for stepped seal configurations the leakage flow

direction is referred to as either from the large-to-small seal diameter

(LTSD) or trom the small-to-large seal diameter (STLD).
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The flow reference conditions were determined in a similar manner for
all cases considered. The inlet stagnation pressure, Po, and stagnation

temperature, To, were specified as was the ratio of upstream to

downstream pressure, Po/PD. In addition an estimate of the leakage

rate (mass flow), W, through the seal was obtained either from the results

of the Allison experimental program or the Allison design model. Given the

upstream pressure and temperature, the upstream density, po, can be

calculated from the perfect gas law while the upstream viscosity, v, can be

calculated from Sutherland's viscosity law, Ref. 31. The average inlet

velocity, V, can be calculated from the relationship (for the cases

considered the inlet Mach numbers were on the order of 0.01, hence the

stagnation and the static conditions are virtually identical)

W
V 2 (68)poA

where A is the known inlet area. All cases considered in this study had a

spanwise distance, of 6.28 in. - .160 m. The above now yields enough

information so that reference (or upstream) Reynolds and Mach numbers can

be calculated. Using the above upstream variables as reference quantities,

the governing equations can be nondimensionalized. When a case is

converged for a given ratio of upstream to downstream pressure ratio

(sometimes referred to as the seal expansion ratio r a Po/PD), the

leakage rate through the seal can then be recalculated and compared to the

initial estimate. For instance if the calculated nondlmensional average

upstream velocity V is 0.5, the computed leakage rate would be 50% of the

estimated rate. The calculated reference Reynolds and Mach numbers would

correspondingly have to be reduced by 50. The Initial conditions for all

cases considered was to assume that the flow was initially at rest at the

stagnation conditions. The back pressure was then gradually lowered until

the desired value of Pt) was obtained. The solution was then time marched

until a steady state solution was obtained. The output of each calculation

consists of the fields of the independent and dependent variables, i.e.,

the Cprtesian or cylindrical polar coordinates and the velocity components,

density, enthalpy and, if appropriate, the turbulence kinetic energy and

the torhulene:e dissipation. In addition any of the derived variables such

as prestsure, Lemperature, viscosity, stream tunction, total temperature and

pressure, etc. can be calculated and displayed.
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3.1 Calculation of Leakage Rates

The majority of the calculations performed under this effort were

done in the first category of calculations and were designed to demonstrate

the ability of the computational procedure to predict the leakage rate for

a large number of straight-through and stepped seal configurations at

various flow conditions. A total of 18 cases were run, 13 straight-through

seal configurations and 5 stepped seal configurations. Tables I and 2 and

Figs. 3 and 4 give a brief synopsis of the configurations considered, the

flow conditions and the modelling assumptions under which the calculations

were performed. Several of the calculations were made before the energy

equation option was operational in the computer code. For these

calculations the energy equation was approximated by assuming that the

stagnation enthalpy, ho. was constant. For flow In the Mach nimber range

considered in this study (essentially incompressible on the inlet plane to

a peak in the flow field of between 0.7 and 1.6 depending on the flow

conditions and the geometry of the seal), this assumption, which negleets

heat conduction and stress work, is a reasonable approximation to the

physics. If, however, the walls are nonadiabatic, i.e., either highly

cooled or heated, the assumption of zero heat transfer is invalid. For the

cases considered under this study, the walls were neither heated nor

cooled. Hence the adiabatic assumption was valid. In addition the earlier

calculations presumed that the inlet flow was fully developed, and, hence,

tn theme calculations a one-seventh (1/7) power law (Ref. 22) was used for

the inlet streamvwie velocity profile. for later calculationc, a boundary

layer equal to 502 of the clearance vxg assumed on both the inlet section

of the rotor and the land* Within thi! boundary layers, the method of hNaise

and McDonald (Ref. 23) wan used to ohbtin the turbulent streamwise velocity

profile. The mixing length turbulence model utilized 'was a hybrid model

consisting of a Williamson's model (Ref. 32) in the regions away from solid

walls and a van Driest damped model (Ref. 33) in the regions near walls.

In practice, both mixing length values were calculated at each grid Fpsnt

and the locally minimum value chosen. This gives a smooth variation of

mixing length throughout the flow field. In the later calculations, the

flows were calculatod with both the mixing length and the previously

discussed k-c turbulence model.
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SThe number of grid points utilized for each calculation is presented

* in Tatles 1 and 2. The basic philosophy was to concentrate the grid points

in the regions where the largest physical gradients of the dependent

variables were expected. These areas were: (1) in the region between the

tip of the knife blades and the land, (2) in the wall boundary layers,

and (3) in the vicinity of rapid expansion or compression. The total

streamwise extent of the physical domain chosen for the computations was

300 clearances in length. The inlet plane was chosen at a distance of

50 clearances upstream of the front face root of the first knife leaving as

much as 250 clearances (depending on the seal configuration) from the last

knife to the exit plane. The relatively large extent of the domain

downstream of the last knife was required by the existence of a large

streamwise recirculation zone downstream of the last knife for each

case Investigated. This large domain was needed to ensure that the

recirculation zone would remain inside the region chosen for the

computation. A typical distribution of grid points is shown in the

- vicinity of the seal assembly (see Fig. 5). In the regions both upstream

and downstream of the knives, the streamwise grid spacing was considerably

larger since in these regions the streamwise gradients were relatively

srstall.

Both Tables I and 2 compare the calculated leakage rates, Wcalc,

with the Allison correlation leakage rates, Wcorr. The Allison

correlation leakage rates are a composite of the calculated leakage rates

as determined by the Allison design model and experimentally measured

leakage rates. The Allison design model (Ref. 30) is based on a multiple

regression analysis of a large bank of experimental data. The design model

can predict the leakage rates for a wide variety of aeal geometries at

various flow conditions. The data used as the basis for thia model are

taken from experiments performed on full-scale labyrinth seals since this

model is intended to be used to design contemporary gab turbine engine

seals. The calculations performed under this effort, however, were made

* for large-scale (nominally lOX scale for the straight-through seats and

5X scale for the stepped seals) labyrinth seals as were the leakage rate

measurements performed under the experimental portion of this effort. When

an experiment had been performed on the particular labyrinth seal at the

specified flow conditions, the Allison correlation leakage rate was taken

to oe the experimentally determined value. This is noted on Tables I

and 2 by the Allison designated test number. However for several of the
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cases calculated, no experimental leakage rates were available. To

determine correlation leakage rates for these cases, the following

procedure was used. First the cases were divided into straight Lhrough and

stepped seal configurations, Tables I and 2, respectively. For the

straight through seals, the Allison design model was used to predict the

leakage rates for the cases for which experimental data existed, i.e. cases

5, 6, 7 and 7A. For these cases it was found that the Allison design model

underpredicted the leakage rates by an average of 12%. It is felt that

this underprediction is due to the Reynolds number effect of the smaller

full-scale seals used in the design model. Hence, to account for this

effect for the cases where experimental data were not available, the

Allison design model was used to determine preliminary values which were

then scaled by the factor of 1.12 to account for the large-scale seals used

in the calculation.

Of the four stepped seal cases considereu in this study, experimental

data existed for two cases, cases 12 and 13. These values were used as the

Allison correlation leakage rates, Wcalc, for these cases. For case 11

(a LOX-scale model), experimental results existed for a 5X-scale seal at

the same flow conditions. This result was compared with the Allison design

model prediction for the full-scale seal. The ratio of leakage rates,

1.09, was applied to the lOX-scale Allison design model leakage rate to

obtain the final correlation value. For case 14, the experimental leakage

rate for case 12 (the three knife stepped seal with rectangular knives,

STLD) was compared with the design model full-scale leakage rate for the

* !case 12 seal. The ratio of these two leakage rates, 0.96. was then used to

correct the design model leakage rate for case 14, The assumption was

that the ratio between the experimental leakage and the design model for

the taperei knives is the same as that for rectangular knives. The results

for the stepped seal cases are contained in Table 2.

Examination of the results for the straight-through seal cases

Table I shows generally good agreement between the calculated leakage

rates and Allison correlation leakage rates. To better understand the

implications of the results presented in Table 1, it is perhaps desirable

to examine the cases individually and/or in logical groupings.

Cases for which experiaenal data are available, excepting case 8, the

three-knife straight-through seal with tapered knives, show excellent
agreement. The average discrepancy is 3%. The calculated leakage rate
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for case 8 is from 15 to 25 percent lower than that measured depending on

whether a mixing length or a k-c turbulence model was utilized in the

"calculation. For this case the k-e turbulence model gives larger values of

turbulent viscosity than the mixing length model and, hence, thicker

boundary layers and less leakage. On the other hand the predicted and

measured leakage rates for case 7, the three knife straight-through seal

with tapered knives at a pressure ratio of 4.98, shows excellent agreement,

the calculated value predicting only 1.5 percent more than the measured

value. The flow for this case was choked as the peak Mach number was

1.398. Examination of the flow for the other straight-through case where

the flow was choked and experimental data existed, case 5, indicates a

general ability to accurately calculate leakage rates for choked cases;

the discrepancy between the calculated and measured leakage rates for this

case is approximately 0.9 percent.

For case 1, the single knife straight-thriugh seal with a rectangular

knife at a pressure ratio of 3.98, no experimentally measured value of

leakage rate was available. The correlation value predicts approximately

30 percent more leakage than the calculated value. This might be due to

the use of only 21 grid points in the transverse direction which could

possibly lead to an underprediction of mass flux (this was the first case

-1 /run under this effort).

The three-knife straight-through seal with rectangular knives run at a

pressure ratio of 2.0. case 2, shows a reasonable agreement between the

calculated and the correlation leakage rates (no experimental data were

available for this case). The calculated value of leakage was 1.7 percent

lower than the correlation.

For the cases of the single knife and triple knife straight-through

seals with slanted knives at a pressure ratio of 2.0, (cases 3 and 4) the

agreement between the calculated leakage rates and the correlation values

are reasonable with an overprediction of leakage rates of 12 and 7 percent

for cases 3 and 4 respectively. From a computational viewpoint, these
cases are extremely difficult because of the geometric requirements that
the width of the base of the knife blade is large compared to the width

of the tip of the knife blade, i.e., a ratio on the order of 100:1.

This not only causes difficulty in generating a grid structure, but

inherently yields a coordinate syntem that is highly skewed (an opponed

-* to orthogonal) relative to the other cases considered in this Ntudy.

"Because the flow running up the leading edge surface of the knife

34

it.'' .'% ' '.• .'- " *' J•• - " "*•'••.*." - •••"-• : ''T -•¶ '' - *%'I -%"•'% .• %•,- '-Z " -. ,,, ' * ''•" ',



is oriented at an angle greater than 90° to the incoming flow, this results

in extremely large gradients in the vicinity of the leading edge of the tip

of the knife, i.e., in the entrance region of the gap between the first

knife and the land. The large gradients require the use of a large number

of grid points in the vicinity of the leading edge in order to resolve the

large gradients. The existence of the large gradients in this region leads

to strong dissipation and hence the excellent performance of this seal.

In the case of the worn single knife straight-through seal, the

calculated leakage rate underpredicts the measured rate by 5.8 percent and

1.2 percent for the mixing length and a k-s turbulence modelsrespectively.

In this case the k-c turbulence model in general predicts slightly lower

2 values of turbulent viscosity and hence a slightly higher leakage rate. In

both cases the discrepancy between the measured and calculated rates are

* low.

The calculation of the flow in the three knife straight-through seal

with tapered knives at a pressure ratio of 2.0, case 8, was run in three

modes: (1) a mixing length model with a fully developed 1/7 power law

turbulent inlet profile with a 51 x 71 computational grid, (2) a mixing

length model with a turbulent inlet profile on the inlet land and rotor

equal to 50% of a clearance height with a 61 x 101 grid and (3) a k-c

*, turbulence model with the same inlet profile and grid structure as in (2).

For the first two modes, the calculated leakage rate was approximately 15

percent less than the measured value, while for the k-e turbulence model

"the calculated leakage rate was approximately 25 percent lower. In light

"of the excellent agreement for the three knife straight-through seal with

rectangular knives and the single knife straight through seal with a

tapered knife, where the physical processes should be similar to the three

*, knife straight-through seal with taoered knives, the amount of the

discrepancy was unexpected. Possible reasons for the discrepancy could be

the existence of leaks in the experimentil apparatus, three-dimensional

effects in the apparatus, the sudden expansion downstream of the last knife

blade (which did not exist in the calculation) or numerical truncation

error in the calculation. Without either repeating the experiment and/or

the calculation, it is difficult to draw any firm conclusions for case 8.

In addition, It is interesting to note that pressure taps were placed at

key locations in the experimental apparatus (see Fig. 6), and that the

* agreement between the pressure calculation and experiment were excellent.
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For the three knife straight-through seal with tapered knives and

with a rough land (the roughness was produced by attaching a 30 grit

* sand paper to the land) at a pressure ratio also of 2.0 (case 9),

the agreement between the calculated and measured leakage rate is

reasonable. The calculated leakage value is 1.4 percent lower than the

measured value. The wall roughness was simulated by using the method of

van Driest (Ref. 33) where a slip velocity is assumed on the rough wall.

Computationally this has the effect of making the boundary layer thinner

and hence more mass can pass through the device. The initial condition for

this case was taken as the converged solution for case 8B. The no-slip

condition on the land was then replaced by the van Driest model, and a

converged solution obtained. It is interesting to note that the effect of

the roughness was to increase the peak Mach number from 0.776 to 0.946.

Finally the last case considered was the three knife straight-through

seal with tapered knives and with injection at a pressure of 2.04.'

N (case 10). The injection rate was chosen as nominally 10 percent of the

total leakage rate. The injection port was positioned in the land midway

between the first and second knives. Again the initial condition was taken

as the converged result of case 8b. The injection had the same effect as

land roughness on the overall leakage rate. The effect of the injection

(from a computational viewpoint) is that the amount of leakage is increased

over the noninjection case. (Note that no correlation value of leakage

rate is available for this case). One possible explanation is that the

injected fluid is not exposed to the large losses associated with the

leading edge of the first knife. The injection has only the minimal local

effect of forcing the flow emerging from between the first knife and land

"slightly further into the cavity region between the first and second

knives. Thus the tentative conclusion is that for this injection case is

the effect is negative. i.e., the leakage rate is increased. Perhaps the

more desirable location for injection would be in the vicinity of the

leading edge of the first knife to further increase the losses in this

"critical region.

The results for the stepped seal configurations are presented in

Tahle 2. All asees were run In the flow direction of small-to-large seal

dtime.torg (S11.1 mode.). Kxpertmentni dato existed for cases 12 and 13.

Cases It and 14 had the predicted correlation leakage rates previously
.3
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discussed. For the stepped seal configurations, only case 11 was run

under choked conditions. For this case the pressure ratio was 2.5

(all other stepped configurations were run at a pressure ratio of 2.0),

and the peak calculated Mach number was 1.229. The calculated leakage

rate was approximately 12 percent larger than the correlated value.

A similar trend was also noted for case 12, the three knife stepped seal

with rectangular knives, where the predicted leakage rate was 25 percent

higher than the experimentally determined rate. Possible reasons for this

discrepancy would be as was previously discussed for the three knife

straight-through seal with tapered knives. Again it is of interest to note

that the correlation between the measured and calculated static pressures

at key points in the seal is excellent (see Fig. 7). This result is

similar to that observed for the case of the three knife straight through

seal with tapered knives. The other stepped seal configuration for which

experimental data existed was case 13, the single knife stepped seal with a

slanted knife configuratioii. In this case, the predicted leakage rate was

8 percent higher than the measured value. The three knife stepped seal

with tapered knives configuration (case 14) was calculated with both a

mixing length and a k-c turbulence model. The calculated results were not

significantly different. The mixing length model predicting a leakage rate

about 10 percent higher than the correlated value, and the k-c turbulence

model predicting a leakage rate about 11 percent higher.

In general the capability of the numerical procedure to accurately

predict the leakage rates for a wide variety of seal configurations under

various flow conditions appears to be jusified. In the worst case the

prediction differed from the Allison correlation value by 30 percent. In

the vast majority of cases a more typical variation would be 5-10 percent,

and in many cases the predicted and measured values differed by only a few

percent. Since this was the first effort in applying this numerical

procedure to labyrinth seals, it is to be expected that future results

would be even more encouraging. A primary advantage of the calculation

procedure is that details of the flow are calculated at every point in the

flow, hence the manner in which the flow develops, the basic flow patterns,

etc. can be discerned immediately. Typical CPU calculation times for these

cases were on the order of 1.5 hours on a CDC 7600 at the Ballistic

Research Laboratory, i.e., about $500 per case at the overnight rate. In
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addition, recent efficiencies incorporated into the computer program used

in the above calculations, viz., in the vectorization on the CRAY

computers, have resulted and will result in even lower cost per case rates

in the future.

Plots of streamlines, velocity vectors and Mach number contours are

shown for representative cases calculated in the leakage rate study

(Figs. 8 to 13). When the earlier cases were run, the capability to

calculate streamlines was not operational. However, basic streamline

patterns can be inferred from the velocity vector plots. The plots

represent the flow only in the region of the knives. For all cases

investigated, a large clockwise streamwise recirculation was generated

downstream of the last knife for flow from left to right. Usually this %'as

accompanied by a small counterclockwise recirculation zone at the junction4

of the downstream base of the last knife at the rotor. In some cases small

clockwise recirculation zones were calculated in the gap betwe('t the

leading edge of the first knife and the land. When no recirculation zone

was calculated in this region, the flow was significantly declerated due

to the strong adverse pressure gradient in this region. Ia all cases a

recirculation pattern existed in the cavity regions. In bome cases a small

counterclockwise recirculation zone would exist at the trailing edge of the

knives due to the separation of the flow. At the junction of the upstream

f ace of the first knife and the rotor cylinder, 9 small clockwise

recirculation zone would usually exist. In addition, in the case of

stepped seals, the flow would separate off the convex corner of the land

*• step forming a counterclockwise recirculation pattern. In general, the

controling location of the flow for the cases invv•tigated appeared to be

the entrance region between the tip of th&e first knife atdd the land. In

this region the streauwise flow would a.celerxto and large (on the order of

the streamwise velocity) transverse flows would be generate4. At the inlet

regions of any downstream knives, the acce !rations (and hence losses)

would be much less as the flow di4 not significant.ly turn into the cavity

regions. Thus, the flow enters the clearanei gaps of tht: subsequent knives

with relatively small tansverse velocities qnd,'hence, tihe loss is not

nearly as great as at the firs, knife. For the cases where the flow is

choked, an expansion pattern was prediLted in the region of the exit of the

"last knife. This can be see:i in the t.ach number contour plots where the
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gradient in Mach number is large, i.e., the Mach number contours are close

together.

3.2 Generation of Performance Curves

The purpose of the second classification of calculation was to

demonstrate that the computer code could be used to generate designers'

curves or performance plots for specific seal geometries. Specifically, it

is desired to construct curves of the flow parameter, *,

1 • = PoA(69)

0

(where again W is the leakage rate, To is the upstream stagnation

temperature, Po is the upstream stagnation pressure and A is the

clearance area over one of the knives) versus the expansion ratio,

Po/PD, for a specific seal geometry. In this study two seal geometries

were considered: (1) a three knife straight through seal with tapered

knives, Fig. 3f, and (2) a three knife stepped seal with tapered knives,

Fig. 4c. Both of these geometries were considered in the previously

described leakage calculations. The main idea here is to generate the

curves for cases for which experimental data exist and for which the

Allison design model can be used to generate similar curves. Demonstration

of the ability of the numerical procedure to produce reasonable performance

plots for these two designs would be part of the overall validation process

for the code. In addition, it would lend credence to the use of the

numerical procedure to generate performance curves for either advanced seal

configurations for which data did ,uot exist or for investigating variants

-e of existing seal configurations such as the effects of injection, the

effects of various rotational speeds, the effects of wear on various seal

designs, etc. These curves could then be used by a designer of labyrinth

seal systems to investigate various candidate configurations without the

need for setting up experimental rigs. Using this as a method of

eliminating undesirable configurations, the designer would then be able to

experimentally investigate the performance of the remaining candidate

configurations. Considerable savings could be realized by the use of such

a process and, in addition, a better seal could be produced.
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The technique utilized in this study to obtain the performance plots

was started from a converged solution at a pressure ratio of 2.0. For the

two seal configurations considered in this study the converged solutions

from the previously described leakage investigation (cases 8B and 14A) were

used as the initial conditions, i.e., the pressure ratio of 2.0 cases. The

back pressures for these two cases were further lowered to a second desired

pressure and a converged solution obtained for these cases. This process

was continued at other back pressures. For this study converged solutions

were obtained for pressure ratios of 2.0, 2.5, 3.5 and 5.0. Initially for

both seal configurations the flow was unchoked. However, as the back

pressure was lowered the flow choked. For both cases considered, a mixing
length turbulence model was utilized.

Overall the use of the computational procedure to produce a

performance curve for the two seal configurations seems to be well

justified. The two curves produced, although not yielding quantitatively

the same results as the design model, gave curves that were qualitatively

similar to the measured data. In addition, the prediction of the choke

points appear to be in reasonable agreement with the data. It is to be

expected, although this has not been demonstrated, that similar curves

could be generated for the other configurations considered in the leakage

* rate study. In addition, the performance curves could also be generated

* for alternate designs such as smaller or larger clearance, knife tip

thicknesses, slant angle, etc. A major advantage would be the ability to

generate performance plots for configurations not presently in the Allison

or other design models.

Performance curves were generated for two seal configurations:

(1) the three knife straight-through seal with tapered knives and (2) the

three knife stepped seal with tapered knives. These seal configurations

are the same as those analyzed for leakage rates under cases 8 and 24,

i.e., Fig. 3f and Fig. 3e, respectively. Results for these two

configurations are presented in Figs. 14 and 15. For both cases the

calculated values of the flow parameters are compared with the experimental

data, the Allison full-scale design model and the Allison design model

corrected for the effect of Reynolds number (previously discussed), Por

the three knife stepped seal with tapered knives no experimental data were

available, so in that case the experimental data for the three knife
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stepped seal with rectangular knives was used. It is expected that the

tapering of the knives would have a small effect on the performance of the

seal.

The results for the three knife straight-through seal with tapered

knives presented in Fig. 14 show that the calculated values of flow

parameter are lower than the measured values of flow parameter by

approximately 15 per cent at all pressure ratios. This is consistent with

the results shown in the leakage study. Possible explanations for the

difference between the measured and calculated flow parameter could be the

following: (1) leaks in the experimental apparatus which would yield a

larger mass-flux, (2) hot wire measurement/calibration errors,

(3) under-resolution of the boundary layers in the calculation which would

lead to thicker boundary layers and hence less computational mass flux and,

(4) errors associated with the turbulence model used in the calculation.

In addition, it is also possible that the three-dimensional experimental

apparatus might have had significant three-dimensional effects, and thus

a discrepancy would exist when.comparing the results with a two-dimensional

calculation. The shape of the curves is similar and the predicted

choke point (somewhere between a pressure ratio of 2.5 and 3.5) is

consistent with the experimentally observed choke pressure ratio of 2.72.

The full-scale design model values of flow parameter are approximately

5 percent higher than the calculated values while the design model values

corrected for the apparent effect of Reynolds number are approximately

15 percent higher than the calculated values.

The results for the three knife stepped seal with tapered knives is

presented in Fig. 15. In this case the predicted values of the flow

parameter are approximately 10 percent higher than the measured values.

The shape of the calclated performance curve is of the same form as the

measured values. The calculated choke value of the pressure ratio is

approximately 3.5-4.0 which is consistent with the measured value of 3.84.

At the higher values of pressure ratio there is some scatter in the data.

In addition from Pig. 15 it can be seen that the full-scale Allison design

model uniformly overpredicts the flow parameter for all pressure ratios.

41

%
`•• .• • •\ •\ •`f•`.. . .. 4.e •e . •,.•''•



3.3 Comparison of Calculated and Experimental Results

To further validate the ability of the computational procedure to

accurately calculate the flow in labyrinth seals, a comparison between

available experimental data and computed results was made. Two labyrinth

seal configurations were considered in this effort: (1) the three knife

straight through seal with tapered knives (see Fig. 3f) and (2) the three

knife stepped seal with tapered knives (see Fig. 4c). For both of the

configurations extensive hot wire measurements were made as part of the

experimental portion of this contractual effort. Details of the

experimental work, performed by the Allison Gas Turbine Division, GMC, are

reported in Ref. 25. In addition details of the experimental techniques,

data reduction, etc. can be found in the above-mentioned reference. Both

seal configurations considered were tested at pressure ratios of 2.0, and

these are the cases that will be considered in this report. Schematics of

the two seals are shown iu Figs. 16 and 17. Probe locations are noted by

the stations A, B, etc.

For the straight-through seal configuration probes were made in the

centers of the first and third knife tip clearance gaps, i.e., stations B

and I. Probes were also made at 0.20 inches upstream and downstream of the

% 4 edges of the knife tips, i.e., at stations A, C, E. G, R, and J

Additionally, a probe was made at the half point of the first cavity, i.e.,

station D * Measurements in the clearance gaps consist of the streamwise

"velocity component while measurements fore and aft of the knife tips and in

"the first cavity consist of both streamwise and transverse velocity

components.

For the three knife stepped seal with tapered knives, probes were made

in the centers of each knife tip in the clearance gaps, i.e., stations B,

F. and I of Fig. 17. The measured results for this seal consist of the

streamwise velocity component only.

The calculations used for the comparison were previously described in

the section on the calculation of leakage rates, specifically cases RC

and 14B. Both of the computed cases utilized a k-e turbulence model to

account for the effects of turbulence. The governing equations consisted

of the two momentum equations, the continuity equation and the energy

. equation. Boundary conditions were as previously described. Cases RC
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and 14B utilized the mixing length solutions of cases 8B and 14A

respectively as initial conditions. The two turbulence equations, the

turbulence kinetic energy equation, Eq. (27), and the dissipation of

turbulence kinetic energy equations, Eq. (28), were then solved to

convergence with the fluid dynamic variables, u, w, p and h frozen to

obtain initial values of k and e. Then the fluid dynamic and the k and C

equations were simultaneously solved until a steady state solution was

obtained.

The results for the three knife straight-through seal with tapered

knives are presented in Figs. 18 through 23. For the flow across the

centerline of the clearance gap at the tip of the first knife (Fig. 18),

the calculated flow is uniformly of lower velocity. Qualitatively the

shape of the streamwise velocity profile is similar with both measured and

calculated profiles showing a tendency of the flow to separate on the tip

of the knife. This can be seen by the shape of the streamwise velocity

profile on the knife tip having a significantly smaller gradient (skin

friction) than on the land. The measured velocity profile chows a thinner

boundary layer on both the knife tip and the land than the predicted

boundary layer profile. The measured profile shows no discernable boundary

layer on the land. The difference in the magnitude of the calculated and

measured streamwise velocity is consistent with the results of the leakage

study where the calculated leakage rate was lower than the measured value

(as was previously discussed). The results for the streamwise velocity

profile in the clearance gap at the third knife tip (Fig. 19) again shows

uniformly lower calculated values than those measured. In this case the

measured profile shows a monotonically Increasing streamwise velocity as

the distance from the knife tip is increased. The calculated velocity

profile shows a slightly skewed profile around the centerline in the middle

of the gap with the tip boundary layer being somewhat thicker titan the land

boundary layer. Again the measured results show no discernable boundary

layer on the land.

The results in the region 0.20 inches upstream of the leading edge of

the first knife are presented in Fig. 20 and the tabulated data are

presented in Table 3. Qualitatively the experimental data agree with the

calculated flow angles. (If the calibration of the hot-wire is valid, flow

angles and velocity magnitude* should be accurate to a few percent).
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The velocity magnitudes calculated are uniformly lower than those measured

which is again consistent with the calculated leakage rate being lower than

the measured values.

The results in the cavity regions between the knives are presented in

Figs 21 and 22. Fig. 21 shows the calculated and measured velocity vectors

in the first cavity and Fig 22 shows the calculated and measured velocity

vectors in the second cavity. The corresponding tabular values are

presented in Table 3. In the cavity between the first and second knives
the calculated and measured flow angles are quite similar, viz., the flow

angles very nearly match. This indicates that the sizes and locations of

the recirculation zone are similar. Generally the measured values of the
* velocity in the cavity are higher than the calculated values. However, in

the region above the recirculation zone the calculated magnitude of the

velocity is higher at stations C and D and lower at station E.

In the cavity between the second and third knives the results are

similar to those In the first cavity. The flow angles predicted by the

calculation are a good approximation of the meesured values, sei

Table 3. AgAin the measured speeds in the recirculation zone are higher

than those calculated. The behavior of the speeds above the recirculation

zone is the same as in the first cavity, i.e., at station G the calculated
speeds are higher than measured snd at station H the calculated speeds are

lower than the measured speeds.

At the last station where sp",t's and flow angles were measured,

station 3 , measurements show a considerably di.ferent flow structure than

that calculated (see Fig. 23 and Table 3). The calculated flow angles do
not in general agree with the measured values. The calculated speeds

behind the knife are of approximately the same magnitude as those

measured. However the calculated speed at the upper most data point is

over three times the measured value. The calculation predict* a larger

recirculation zone downstream of last knife than the measured data seem to
predict. Although it is difficult to determine from the limited amount of

* data available In this region, the measured recirculation zone appears to

be much thinner than the predicted one.

The results for STLD flow through the three knife stepped seal with

tapered knives are presented in Figs. 24 throurh 26. Qualitatively the
computed and measured values of the streauvise velocity profiles in the
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clearance gaps above the first and second knife tips are similar. In the

first knife tip clearance gap (Fig. 24) the peak velocities are of

approximately the same value, while in the second knife tip clearance gap

the calculated peak velocity is 16 percent lower than the measured value.

At the first knife tip no discernible land boundary layer is observed

in the measurements. In the case of the stepped seal (which is contrary to

the case of the straight-through seal) the calculated flow has a somewhat

lesser tendency to separate over the leading edge of the first knife than

does the measured flow.

For the second knife (Fig. 25) the calculated boundary layer profile

over the knife tip is very similar to the measured-one.

For the third knife tip clearance gap (Fig. 26) the measured flow is

qualitatively similar to that measured for the previously described

straight-through seal. A monotonically increasing streamwise velocity

profile with increasing normal distance from the knife tip is observed in

both cases. Again no discernible measured boundary layer is seen on the

4land. Although qualitatively the calculated and measured profiles are

dissimilar, the peak speeds for the two profiles are within & few percent

of e*.zb other. As with the three knife straight-through seal with tapered

knives, the measured datp would sees to indicate a smaller recirculation

zone downstream of the last stepped seal knife and hence a more rapid

expansion than that predicted by the calculation.

In general the comparisons between the measured and the calculated

flows are encouraging. Since this ts the first effort to both predict the

flow in such environments and to perform detailed measurement# on these

types of labyrinth seals, the results are better than might have been

anticipated. More experience in both the experimental and analytical

efforts should lead to considerable improvements it both areas. An

important point t* be mentioned at this juncture is that no attempt was

made to 'fine tune' the calculations to get better comparisoms with the

experimental data, The analysis models were in fact run before the test

data were available. The measured data comparisoo was ierformod with model
calculations that were not influenced by the experimental program.

The type of 'tuning' which could be examined would concern improving

the numerical accuracy and modifying the inflow profiles to more accurately

reflect the conditions (apparently) .3ccurring in the experimental seals.
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3.4 Rotating Labyrinth Seal Calculation

The first three categories of calculations performed in this study

were concerned with "two-dimensional" labyrinth seal configurations having

a rectangular clearance gap. All experimental cases were run with a

spanwise dimension of 6.28 inches to simulate the static test rig.

The flow through the clearance gaps would essentially be two-dimensional at

* the experimental aspect ratios, i.e., the endwall effects were neglected.

Most practical applications of labyrinth seals are for rotating equipment

in which case an axially symmetric set of coordinates must be used to

describe the seal geometry. In order to demonstrate this capability a

sample case was run with rotation.

The three knife straight seal with tapered knives was chosen with the

knife side rotating for demonstration at a pressure ratio of 2.0. As in

the nonrotating case the flow was initially assumed to be stagnant and the

back pressure lowered. The flow was then drawn t' rough the seal and the

basic nonrotating flow pattern established. Then the rotor was turned

until the desired rotational speed was obtained and the converged solution

with rotation was obtained. The equations solved are the transformed

cylindrical polar Navier-Stokes equations. The transformation is required

because of the tapered knives which yield a nonorthogonal coordinate

system. Three separate momentum equations, the continuity equation and

an energy equation are solved. Because of the rotation of the rotor,

a rotational momentum equation must be solved even though all rotational

* derivatives are zero. The physical dimensions for the seal configuration

chosen are shown in Fig. 3g. In addition the radius of the inner

cylindrical surface of the rotor was arbitrarily chosen as 0.254 metere

(or 100 clearances) and the rotational speed was chosen as 6,000

*, revolutions per minute, 628 radians per sec.

A sample E -eamline plot in the vicinity of the first knife for the

rotating seal case is shown in Fig. 27. Qualitatively the streamline

patterns are the same as for the nonrotating case. The steady

state value of the flow parameter for the roteting case wan

0.315 lbm °RI/ 2 /lbf-sec vs 0.331 Ibm R1 /21 ibf-sec for the nonrotating

case. Thus the calculated overall effect of the cylindricil symmetry apd

the rotational effects is to decrease the value of the flow parameter
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(ane hence comparable leakage rate) for this seal configuration by about

5 percent over the nonrotating case.

Another effect predicted by the calculation procedure was the rather

large amount of swirl velocity that exists far downstream of the last

knife. Since the height of the knives are 11/12 of the total distance from

the rotor cylinder to the land, the knives impart large amounts of swirl

into the upper portion of the flow domain (the knife tip speeds are 12.6

times the mean inlet velocity and 71 percent of the peak streamwise

velocity downstream of the last knife tip). In the immediate vicinity fo

the trailing edge of the last knife, the swirl is rather rapidly dissipated

by the large. viscous effects (at one clearance downstream the swirl

velocity has decreased to 45 percent of the peak tip velocity). However

downstream of this region the losses are much smaller. At 100 clearances

downstream the swirl velocity drops by 18 percent. Thereafter the

decreases in the swirl level become essentially zero, This is probably due

to the small viscous forces in the core of the flow far downstream and the

lack of a circumferential pressure gradient. On the other hand in the

region upstream of the first knife, the extent of the penetration of the

swirl into the flow is minimal. The swirl imparted into the flow by the

rotor is small upstream of the first knife. As the first knife is

approached some of the swirl is convected away from the rotor surface by

the increasing transverse velocity (caused by the turning of the streamvise

velocity to flow over the knife).

The general observation for the rotation case is that the code appears

to be able to successfully calculate seal flows in the presence of

rotation. In future work this should probably be an are* where

considerable effort should he expended both experimentally and

computationally as this is the actual environment in which real seals

exist.
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4.0 CONCLUSIONS

The results of this first effort to calculate the flow in labyrinth

seals by the numerical solution of the Navier-Stokes equations is very

encouraging. It has been demonstrated that the flow in a wide variety of

realistic labyrinth seal geometries can be calculated under various flow

conditions. The flow in both straight-through and stepped seal geometries

has been successfully calculated. Both orthogonal and nonorthogonal

coordinate systems have been used, and the flow has been calculated for

both a planar and axisymmetric system. Pressure ratios as large as five to

one have been calculated with no apparent problem. Seals with multiple

knives have been considered, and the flow was successfully predicted. A

variety of boundary conditions have been successfully utilized in these

calculations, and a general starting procedure has been developed that can

be used with any seal geometry and for any pressure ratio. The numerical

procedure has proven to be robust, i.e., all calculations that were

attempted produced converged solutions. Both mixing length and

two-equation turbulence models were successfully used for the

calculations. Numerical difficulties often associated with the

two-equation (k-c) turbulence model were eliminated and converged solutions

obtained for cases that had not previously converged with the use of the

k-c turbulence model. Calculation of the flow for an axisymmetric rotating

S; labyrinth seal presented no problem either with the physics or in

numerically converging the case.

Comparison of the calculated results with experimental results was in

general very encouraging, especially when It is remembered that this is the

first effort for those classes of geometries. The computer code has

demonstrated an ability to accurately calculate the leakage rates for a

wide variety of geometries and flow conditions, The two notable exceptions

are the three knife straight-through seal wfth tapered knives and three

t'nife stepped seal with recangular knives at ptessure rat')s of 2.0.

The comparison of the hot-wire data with the calculated results for the

* three knife straight-through ueal with tapered knives shows qualitatively

similar results. The three knife stepped seat with tapered knives

ab•ntih..twd .Iltudit Itv4, t4tre•ment between experiment and ¢•aleulatton.

The performance curves predicted by the calculation procedure generated
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curves similar to experimental data and to those predicted by the Allison

design model. A major advantage of the calculation procedure would be its

ability to calculate these performance curves for labyrinth seals for which

there is no data base.

The calculations performed under this effort required a reasonable

amount of computer time. Further, it is expected that in the near future

with a vectorized program typical calculations could be run for on the

order of less than $200 per data point. It is hoped that the computer code

will be integrated into the design process in the near future. Because of

the very general nature of the computer code, i.e., it has the ability to

accept any reasonable coordinate system and to perform calculations in that

system, it would be desirable to utilize the code to perform calculations

for advanced seal concepts. Finally, it would be desirable to petform

calculations for actual full-scale labyrinth seals in the rotating mode as

this is the environment that is actually experienced in sealing

applications.
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LIST OF SYMBOLS

Symbols

A Area or matrix of time linearization coefficients

cp Specific heat at constant pressure

cI Constant for two equation turbulence model

c2 Constant for two equation turbulence model

co Constant for two equation turbulence model

D Rate of deformation tensor or elements of spatial
differential operators

F Vector of convection and diffusion terms
(Eqs.( 31)-(33))

H Vector of time terms

h Enthalpy

J Jacobian

k Turbulence kinetic energy

L Matrix of linear differential operators

L-m Mixing length

0

m Mass flux

M Mixture molecular weight

n Unit vector in normal direction

,n. Unit vector in symmetry direction

P Pressure

Pr Prandtt1 number

q Heat flux vector

R Universal gas constant

Re Reynolds number

r Seal expansion ratio

S Vector of source terms (Eq.(34))
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Symbols

t Time

T Temperature

U Velocity component

U Specific internal energy

u Cartesian velocity component

V Average velocity

V Velocity vector

W Vector of flux variables (Eq.(30)) or mass flux

x Cartesian coordinate

Sy General coordinate

Greak Symbols

.f Crank-Nicolson factor

A Change

6 Kronecker delta

* c Dissipation of turbulence ki'etic ,nergy

0 Rotational direction

K. Thermal conductivity

U4 Dynamic viscosity

V Kinematic viscosity

D Density

o Dissipation parameter

Stress Lensor

-- Energy d4.snipatton

Vector of dependent varlableo or ftow paramoto.r
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Subscripts

art Artificial

call Calculated

corr Correlated

D Downstream

± Laminar

n Normal

0 Stagnation

s Sysmnetry

T Turbulent

TI First tangential direction

ST2 Second tangential direction

w Wall

;j Associated with ith Cartesian direction

xj Associated with jth Cartesien direction

1 First direction

2 Second direction

4 3 Third direction

Superecripts

n nth time step

T Transpose

* First intermediate time level

Second intermediate time level

t 'Fluctuation

I First direction
-4

2 Second direction
3 Third direction
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APPENDIX A - TRANSFORMATION

It is desired to show that given the general traneformation

Y • yJ(X,,x3.) (A-a)

that the relationship

V (4 0)•o (A-2)

is valid. WhNt- i• t Section 2.2, J is the Jacobian of the transformtion

Eq. (A-4). Applying tho chana rule to Eq. (A-1) yields the relationships

--- •l (A-3)
aYi k 4Yy

Vrittng Eq. (A-3) for each of the three k directions for one yJ yields

three linear relationships for the unknowns ayJ/Uxk. These can be

solved by applying Cramer* rule to yield for J-.,2 acid 3 reapectively

j- . . . . (A-4)

ax, ;YI ay3  Oy3 ay2

ay' a'I a aft1 at1

2 3J- 3 2(A-6)
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dy 2  Rx2  a73  azz aX3(A7
J U J • • •(A-7)

61i l ii7 y a Y (A-8)

2 ai dF2 ri al

J-- -- ... . (A-9)

dirt Oy3 ay' a yy cyl

ai5 ayi ail dy3 (rx ••(A-9o)

. y3  a 2 O x3 ai 2 a (A-b2)

di 2- a - -

ays xl•cy •y y

c'071 ayt r dy'-2(A 2

j - -= (-

air 3 o 2 I y y2 av

SubstLitution of relationfhips (A-4) through (A-12) into Eq. (A-2)

substantiates iAe validity of Eq. (A-2).
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These relationships (A-4) through (A-12) and the definition of the

Jacobian, J, (Eq. 42), are used to calculate the geometric groupings that

occur in the governing system of coupled partial differential equations

represented by Eq. (46) and the auxiliary relationships represented by

Eqs. (47)-(50). These geometric groupings are calculated by finite

difference techniques in an qnalogous manner to that used for the fluid

dynamic derivatives. A finite difference grid distribution is setup in the

computational domain (yJ) and grid points are associated with the

cartesian location (xi). All derivatives of the form axi/3yj are

then approximated by their finite difference analog, i.e., central

differences for interior grid points and three point one-sided

approximations on boundaries Once these derivatives are calculate( for

all values of i and j the Jacobian J and the geometric Sr oupings.

-represented by Eq. (A-4) through Eq.. (A-12) can be calculated.

.!t
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APPENDIX B - SOLUTION PROCEDURE

Background

The solution procedure employs a consistently-split linearized block

implicit (LBI) algorithm which has been discussed in detail in Refs. 12

and 26. There are two important elements of this method:

(1) the use of a noniterative formal time linearization to

produce a fully-coupled linear multidimensional scheme which

is written in -block implicit" form; and

(2) solution of this linearized coupled scheme using a consistent

"splitting" (ADI scheme) patterned after the Douglas-Gunn (Ref. 27)

treatment of scalar ADI schemes.

The method is thus referred to as a split linearized block implicit (LBI)

scheme. The method has several attributes:

(1) the noniterative linearization is efficient;

(2) the fully-coupled linearized algorithm eliminates instabilities

and/or extremely slow convergence rates often attributed to methods

which employ aLd hoc decoupling and linearization assumptions to

identify nonlinear coefficients which are then treated by lag and

update techniques;

(3) the splitting or ADI technique produces an efficient algorithm

which is stable for large time steps and also provides a means for

convergence acceleration for further efficiency in computing steady

solutions;

(4) intermediate steps of the splitting are consistent with the

governing equations, and this means that the "physical" boundary

conditions can be used for the intermediate solutions. Other

splittings which are inconsistent can have several difficulties in

satisfying physical boundary conditions (Ref. 12).

(5) the convergence rate and overali efficiency of the algorithm are
much less sensitive to mesh refinemunt and redistribution than

algorithms based on explicit schemes or which employ ad hoc

decoupling and linearization assumptions. This is important for

accuracy and for computing turbulent flows with viscous sublayer

resolution; and
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(6) the method is general and is specifically designed for the

complex systems of equations which govern multiscale viscous flow

in complicated geometries.

This same algorithm was later considered by Beam and Warming (Ref. 25), but

the ADI splitting was derived by approximate factorization instead of the

Douglas-Gunn procedure. Thcy refer to the algorithm as a "delta form"

approximate factorization scheme. This scheme replaced an earlier non-delta

form scheme (Ref. 34) which has inconsistent intermediate steps.

Split LBI Algorithm

Linearization and Time Differencing

The system of governing equations to be solved consists of three or four

equations: continuity and two or three components of the momentum equation

• .In three or four dependent variables: P, u, v, and/or w. Using notation

C. similar to that in (Ref. 12), at a single grid point this system of equations

can be written in the following form:

wher iH(,)/3t - D(*) + S(#) (B-3)

where 4 is the column-vector of dependent variables, H and S are column-

vector algebraic functions of #, and D is a column vector whose elements are

the spatial differential operators which generate all spatial derivatives

appearing in the governing equation associated with that element.

The solution procedure is based on the following two-level implicit

time-difference approximations of (B-3):

(H+1 II )/&t _ B(,nl + S n+l) + (1-8) (Dn + Sn ) (B-4)

Swhere, for example. 10t+1 denotes ll(#n+|) and At - to1÷ - tn. The

parameter B (0.5 < B < 1) permits a variable time-centering of the scheme.

with a truncation error of order At 2 , (0 - 1/2) At&.

A local time linearization (Taylor expansion about on) of requisite

formal accuracy is Introduced, and this serves to define a linear differen-

tial operator L (cf. Ref. 12) such that

n+1 n n 11+1 n 2
D - 1) + Ln(*n- * ) + O(At2) (B-S)
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Stimilarly,

Hn+l . Hn+ (OH/ ,)n (,+I - n) + 0 (At ) (B-6)

Ssn+' s_ + (as/l)n (e+l_ ; + 0 (At2) (B-7)

Eqs. (B-5 through B-7) are inserted into Eq. (B-4) to obtain the following

system which is linear in *n+l

(A - W~ L n) (f n+l _ n) At (Dn + Sn) (B-8)

and which is termed a linearized block implilcit (LBI) scheme. Here, A

denotes a matrix defined by

A ,)(anla) - BAt (aS/a$)n (B-9)

Eq. (B-8) has 0 (At) accuracy unless H * in which case the accuracy is the

same as Eq. (B-4).

Special Treatment of Diffusive Terms

The time differencing of diffusive terms is modified to accomodate

cross-derivative terms and also turbulent viscosity and artificial dissipa-

tion coefficients which depend on the solution variables. Although formal

linearization of the convection and pressure gradient terms and the resulting

implicit coupling of variables is critical to the stability and rapid con-

vergence of the algorithm, this does not appear to be important for the

turbulent viscosity and artificial dissipation coefficients. Since the

relationship between P. and dj and the mean flow variables is not conven-

iently linearized, these diffusive coefficients are evaluated explicitly at

t" during each time step. Notationally, this is equivalent to neglecting

terms proportional to a ue/a# or adj/a* in Ln. which are formally pre-

sent in the Taylor expansion (4-5), while retaining all terms proportional to

Ue or dj in both Ln and Dn.

It has been found through extensive experience that this has little if

any effect on the performance of the algorithm. This treatment also has the

added benefit that the turbulence model equations can be decoupled from the

syatem of mean flow equations by an appropriate matrix partitioning

= m(cf. Ref. 26) and solved separately in each step of the ADI solution

procedure. This reduces the block size of the block tridiagonal systems

which must be solved in each step and thus reduces the computational labor.
In addition, the viscous terms in the present formulation include

a number of cross-derivative terms implicitly within the ADI treatment

which follows. It is not at all convenient to handle these implicit

cross-derivative terms; and consequently, all cross-derivative



terms are evaluated explicitly at tn. For a scalar model equation representing

combined convection and diffusion, it has been shown by Beam and Warming that the

explicit treatment of cross-derivative terms does not degrade the unconditional

stability of the present algorithm. To preserve notational simplicity, it is

understood that all cross-derivative terms appearing in Ln are neglected but

are retained in Dn. It is important to note that neglecting terms in Ln has

no effect on steady solutions of Eq. (B-8), since *n+l F 0 and thus Eq. (B-8)

reduces to the steady form of the equations: Dn + Sn = 0. Aside from

stability considerations, the only effect of neglecting terms in Ln is to

introduce an 0 (At) truncation error.

Consistent Splitting of the LBI Scheme

To obtain an efficient algorithm, the linearized system (B-8) is split using

ADI techniques. To obtain the split scheme, the multidimensional operator L is

rewritten as the sum of three -one-dimensional" sub-operators Li (i = 1, 2, 3)

each of which contains all terms l,avtng derivatives with respect to the i-th

coordinate. The split form of Eq. (B-8) can be derived either by following the
procedure described by Douglas and Gunn (Ref. 27) in their generalization and

unification of scalar AD! schemes (as done in Refs. 12 and 26), or by using

approximate facrorization. For the present system of equations, the split

algorithm is given by

(A - Al,) - n) At (Dn + Sn) (B-1a)

* (A -8AtL) (A *1) A(e* - 4n) (B-lOb)

(A - M1+1 I= n- (8-10e)

a3

where * and #** are consistent intermediate solutions. If spatial

derivatives appearing in 1.i and 0) are replace by three-point difference

formulas, as indicatod previously, then each step in Eqs. (B-IOa.b and c) can be

solved by a block-tridiagonal elimination.

(Combining Eqn. (B-lOab and c) gives

SO^A (A - ,lAtL,) (A - Mtn) () t (D + S)( )

which approximates the unaplit scheme, Eq. (B-8) to 0 (At 2 ). Since the

intermediate steps are also -on.iistent approximations for Eq. (B-8), physical

boundary conditions can be used for 4* and 0* (Refs. 12 and 26). Finally,

since the Li are homogeneous operdtors, it follows from Eqs. (B-lOa,b and c)
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that steady solutions have the property that *n+1 ** *** = and

satisfy

Dn + Sn = 0 (B-12)

The steady solution thus depends only on the spatial difference approximations

used for Eq. (B-12), and does not depend on the solution algorithm itself.
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